hu hu
MOTION AND DRIVE  -  Tel: 0036-1-445-0435  -  e-mail: info@reductor-motor.com  -  skype: reductors     
 
SALE
LO
LO
 
Products
L
- GEARBOXES
- ELECTRIC MOTORS
- D.C. MOTOR (12V, 24V)
- BLDC MOTORS
- STEPPING MOTORS
- SERVO DRIVES
- VIBROMOTORS
- INVERTERS
- FANS
 
Contact
L

ALWAYS AT YOUR SERVICE
cheap transport
1145 Budapest Róna u. 127/A.
Tel: 0036-1-445-0435
email: info@reductor-motor.com

KI
Skype Me™!
Chat with me

 
Downloads
L

- AC motors catalogue
- DC motors catalogue
- Mechanical variators catalogue
- Planetary gear units catalogue
- Bevel helical gearboxes

 
Theory
L

service factor, electric motors, DC motors, stepper motors, servo motors, vibromotors, frequency inverters, cooling fans, worm gearboxes, helical gearboxes, planetary gearboxes

 
Producers
L

Varvel, Nord, Siti, Watt Drive, Bonfiglioli, Motovario, Spaggiari, Chiaravalli, CHT, Leeson, VEM, Baldor, Lenze, Hydro-mec, Lafert, ICME Motors, WEG, Teco, MGM, SEW, Transtecno, ATB, Bartec, A:O:Smith, Heidolph, Elin Ebg, Siemens, Leroy Somer, Bison, Marelli Motori, Orientalmotor, SPG, Faulhaber, Kelvin, Unimec, Crouzet, THK, Magnetic, Cemp, Carpanelli, Bühler, Piemme

 
More Products
L

- One step helical gear box

Home / Theory
  - Planetary gearboxes

Planetary gearing is a gear system consisting of one or more outer gears, or planet gears, revolving about a central, or sun gear. Typically, the planet gears are mounted on a movable arm or carrier which itself may rotate relative to the sun gear. Epicyclic gearing systems also incorporate the use of an outer ring gear or annulus, which meshes with the planet gears.

The axes of all gears are usually parallel, but for special cases like pencil sharpeners they can be placed at an angle, introducing elements of bevel gear (see below). Further, the sun, planet carrier and annulus axes are usually concentric.

The gear ratio in an epicyclic gearing system is somewhat non-intuitive, particularly because there are several ways in which an input rotation can be converted into an output rotation. The three basic components of the epicyclic gear are:

  • Sun: The central gear
  • Planet carrier: Holds one or more peripheral planet gears, all of the same size, meshed with the sun gear
  • Annulus: An outer ring with inward-facing teeth that mesh with the planet gear or gears

In this example, the carrier (green) is held stationary while the sun gear (yellow) is used as input. The planet gears (blue) turn in a ratio determined by the number of teeth in each gear. Here, the ratio is -24/16, or -3/2; each planet gear turns at 3/2 the rate of the sun gear, in the opposite direction.

In many epicyclic gearing systems, one of these three basic components is held stationary; one of the two remaining components is an input, providing power to the system, while the last component is an output, receiving power from the system. The ratio of input rotation to output rotation is dependent upon the number of teeth in each gear, and upon which component is held stationary.

In other systems, such as hybrid vehicle transmissions, two of the components are used as inputs with the third providing output relative to the two inputs.

Advantages and disadvantages

Advantages of planetary gears over parallel axis gears include high power density, large reduction in a small volume, multiple kinematic combinations, pure torsional reactions, and coaxial shafting. Disadvantages include high bearing loads, inaccessibility, and design complexity. The planetary gearbox arrangement is an engineering design that offers many advantages over traditional gearbox arrangements. One advantage is its unique combination of both compactness and outstanding power transmission efficiencies. A typical efficiency loss in a planetary gearbox arrangement is only 3% per stage. This type of efficiency ensures that a high proportion of the energy being input is transmitted through the gearbox, rather than being wasted on mechanical losses inside the gearbox.

Another advantage of the planetary gearbox arrangement is load distribution. Because the load being transmitted is shared between multiple planets, torque capability is greatly increased. The more planets in the system, the greater load ability and the higher the torque density.

The planetary gearbox arrangement also creates greater stability due to the even distribution of mass and increased rotational stiffness.


Impressum   r   h